NMR characterization of the C-mannose conformation in a thrombospondin repeat using a selective labeling approach

Hendrik RA Jonker, Krishna Saxena, Aleksandra ShcherbakovaHans Bakker, Harald Schwalbe

Angewandte Chemie International Edition

Published: August 3, 2020

DOI: 10.1002/anie.202009489


Despite the great interest in glycoproteins, structural information reporting on conformation and dynamics of the sugar moieties are limited. We present a new biochemical method to express proteins with glycans that are selectively labeled with NMR active nuclei. We report on the incorporation of 13C-labeled mannose in the C-mannosylated UNC-5 thrombospondin repeat. The conformational landscape of the C-mannose sugar puckers attached to tryptophan residues of UNC-5 is characterized by interconversion between the canonical 1C4 state and the B03 / 1S3 state. This flexibility may be essential for protein folding and stabilization. We foresee that this versatile tool to produce proteins with selective labeled C-mannose can be applied and adjusted to other systems and modifications and potentially paves a way to advance glycoprotein research by unravelling the dynamical and conformational properties of glycan structures and their interactions.


C-mannosylation supports folding and enhances stability of thrombospondin repeats

Aleksandra ShcherbakovaMatthias PrellerManuel H TaftJordi PujolsSalvador VenturaBirgit TiemannFalk FR BuettnerHans Bakker

eLife logo

Published: December 23, 2019

https://doi: 10.7554/eLife.52978


Previous studies demonstrated importance of C-mannosylation for efficient protein secretion. To study its impact on protein folding and stability, we analyzed both C-mannosylated and non-C-mannosylated thrombospondin type 1 repeats (TSRs) of netrin receptor UNC-5. In absence of C-mannosylation, UNC-5 TSRs could only be obtained at low temperature and a significant proportion displayed incorrect intermolecular disulfide bridging, which was hardly observed when C-mannosylated. Glycosylated TSRs exhibited higher resistance to thermal and reductive denaturation processes, and the presence of C-mannoses promoted the oxidative folding of a reduced and denatured TSR in vitro. Molecular dynamics simulations supported the experimental studies and showed that C-mannoses can be involved in intramolecular hydrogen bonding and limit the flexibility of the TSR tryptophan-arginine ladder. We propose that in the endoplasmic reticulum folding process, C-mannoses orient the underlying tryptophan residues and facilitate the formation of the tryptophan-arginine ladder, thereby influencing the positioning of cysteines and disulfide bridging.


Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily

Andreia Albuquerque-Wendt, Hermann J. Hütte, Falk F. R. Buettner, Françoise H. Routier, Hans Bakker


Published: September 29, 2019

https://doi: 10.3390/ijms20194842


Glycosyltransferases that use polyisoprenol-linked donor substrates are categorized in the GT-C superfamily. In eukaryotes, they act in the endoplasmic reticulum (ER) lumen and are involved in N-glycosylation, glypiation, O-mannosylation, and C-mannosylation of proteins. We generated a membrane topology model of C-mannosyltransferases (DPY19 family) that concurred perfectly with the 13 transmembrane domains (TMDs) observed in oligosaccharyltransferases (STT3 family) structures. A multiple alignment of family members from diverse organisms highlighted the presence of only a few conserved amino acids between DPY19s and STT3s. Most of these residues were shown to be essential for DPY19 function and are positioned in luminal loops that showed high conservation within the DPY19 family. Multiple alignments of other eukaryotic GT-C families underlined the presence of similar conserved motifs in luminal loops, in all enzymes of the superfamily. Most GT-C enzymes are proposed to have an uneven number of TDMs with 11 (POMT, TMTC, ALG9, ALG12, PIGB, PIGV, and PIGZ) or 13 (DPY19, STT3, and ALG10) membrane-spanning helices. In contrast, PIGM, ALG3, ALG6, and ALG8 have 12 or 14 TMDs and display a C-terminal dilysine ER-retrieval motif oriented towards the cytoplasm. We propose that all members of the GT-C superfamily are evolutionary related enzymes with preserved membrane topology.


Swift Large-scale Examination of Directed Genome Editing

Omar T. Hammouda, Frank Böttger, Joachim Wittbrodt, Thomas Thumberger



Published: March 5, 2019



In the era of CRISPR gene editing and genetic screening, there is an increasing demand for quick and reliable nucleic acid extraction pipelines for rapid genotyping of large and diverse sample sets. Despite continuous improvements of current workflows, the handling-time and material costs per sample remain major limiting factors. Here we present a robust method for low-cost DIY-pipet tips addressing these needs; i.e. using a cellulose filter disc inserted into a regular pipet tip. These filter-in-tips allow for a rapid, stand-alone four-step genotyping workflow by simply binding the DNA contained in the primary lysate to the cellulose filter, washing it in water and eluting it directly into the buffer for the downstream application (e.g. PCR). This drastically cuts down processing time to maximum 30 seconds per sample, with the potential for parallelizing and automation. We show the ease and sensitivity of our procedure by genotyping genetically modified medaka (Oryzias latipes) and zebrafish (Danio rerio) embryos (targeted by CRISPR/Cas9 knock-out and knock-in) in a 96-well plate format. The robust isolation and detection of multiple alleles of various abundancies in a mosaic genetic background allows phenotype-genotype correlation already in the injected generation, demonstrating the reliability and sensitivity of the protocol. Our method is applicable across kingdoms to samples ranging from cells to tissues i. e. plant seedlings, adult flies, mouse cell culture and tissue as well as adult fish fin-clips.


Novel variants and clinical symptoms in four new ALG3‐CDG patients review of the literature, and identification of AAGRP‐ALG3 as a novel ALG3 variant with alanine and glycine‐rich N‐terminus

Human Mutation
Variation, Informatics and Disease
Published: May 8, 2019


ALG3‐CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER‐mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3‐CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5GlcNAc2‐PP‐dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right‐descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3‐CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open‐reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP‐ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.


Cutis laxa, exocrine pancreatic insufficiency and altered cellular metabolomics as additional symptoms in a new patient with ATP6AP1-CDG.

Dimitrov B,  Himmelreich N, Hipgrave Ederveen AL, Lüchtenborg C, Okun JG, Breuer M, Hutter AM, Carl M, Guglielmi L, Hellwig A, Thiemann KC, Jost M, Peters V, Staufner C, Hoffmann GF, Hackenberg A, Paramasivam N, Wiemann S, Eils R, Schlesner M, Strahl S, Brügger B, Wuhrer M, Christoph Korenke G, Thiel C

Molecular Genetics and Metabolism



A mutation in mannose‐phosphate‐dolichol utilization defect 1 reveals clinical symptoms of congenital disorders of glycosylation type I and dystroglycanopathy

Walinka van Tol, Angel Ashikov, Eckhard Korsch, Nurulamin Abu Bakar, Michèl A. Willemsen, Christian Thiel, Dirk J. Lefeber

Journal of Inherited Metabolic Disease

Published: September 30, 2019



Congenital disorders of glycosylation type I (CDG‐I) are inborn errors of metabolism, generally characterized by multisystem clinical manifestations, including developmental delay, hepatopathy, hypotonia, and skin, skeletal, and neurological abnormalities. Among others, dolichol‐phosphate‐mannose (DPM) is the mannose donor for N‐glycosylation as well as O‐mannosylation. DOLK‐CDG, DPM1‐CDG, DPM2‐CDG, and DPM3‐CDG are defects in the DPM synthesis showing both CDG‐I abnormalities and reduced O‐mannosylation of alpha‐dystroglycan (αDG), which leads to muscular dystrophy‐dystroglycanopathy. Mannose‐phosphate‐dolichol utilization defect 1 (MPDU1) plays a role in the utilization of DPM. Here, we report two MPDU1‐CDG patients without skin involvement, but with massive dilatation of the biliary duct system and dystroglycanopathy characteristics including hypotonia, elevated creatine kinase, dilated cardiomyopathy, buphthalmos, and congenital glaucoma. Biochemical analyses revealed elevated disialotransferrin in serum, and analyses in fibroblasts showed shortened lipid linked oligosaccharides and DPM, and reduced O‐mannosylation of αDG. Thus, MPDU1‐CDG can be added to the list of disorders with overlapping biochemical and clinical abnormalities of CDG‐I and dystroglycanopathy.


The Fine Art of Destruction: A Guide to In‐Depth Glycoproteomic Analyses—Exploiting the Diagnostic Potential of Fragment Ions